ON THE GENERALIZED ORDER-k FIBONACCI AND LUCAS NUMBERS
نویسنده
چکیده
In this paper we consider the generalized order-k Fibonacci and Lucas numbers. We give the generalized Binet formula, combinatorial representation and some relations involving the generalized order-k Fibonacci and Lucas numbers.
منابع مشابه
On Families Of Bipartite Graphs Associated With Sums Of Generalized Order-k Fibonacci And Lucas Numbers
In this paper, we consider the relationships between the sums of the generalized order-k Fibonacci and Lucas numbers and 1-factors of bipartite graphs. 1. Introduction We consider the generalized order k Fibonacci and Lucas numbers. In [1], Er de ned k sequences of the generalized order k Fibonacci numbers as shown: g n = k X j=1 g n j ; for n > 0 and 1 i k; (1.1) with boundary conditions for 1...
متن کاملOn the order-k generalized Lucas numbers
In this paper we give a new generalization of the Lucas numbers in matrix representation. Also we present a relation between the generalized order-k Lucas sequences and Fibonacci sequences. 2003 Elsevier Inc. All rights reserved.
متن کاملOn The Second Order Linear Recurrences By Generalized Doubly Stochastic Matrices
In this paper, we consider the relationships between the second order linear recurrences, and the generalized doubly stochastic permanents and determinants. 1. Introduction The Fibonacci sequence, fFng ; is de ned by the recurrence relation, for n 1 Fn+1 = Fn + Fn 1 (1.1) where F0 = 0; F1 = 1: The Lucas Sequence, fLng ; is de ned by the recurrence relation, for n 1 Ln+1 = Ln + Ln 1 (1.2) where ...
متن کاملIdentities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums
As in [1, 2], for rapid numerical calculations of identities pertaining to Lucas or both Fibonacci and Lucas numbers we present each identity as a binomial sum. 1. Preliminaries The two most well-known linear homogeneous recurrence relations of order two with constant coefficients are those that define Fibonacci and Lucas numbers (or Fibonacci and Lucas sequences). They are defined recursively ...
متن کاملOn the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices
In this paper we consider certain generalizations of the well-known Fibonacci and Lucas numbers, the generalized Fibonacci and Lucas p-numbers. We give relationships between the generalized Fibonacci p-numbers, Fp(n), and their sums, Pn i1⁄41F pðiÞ, and the 1-factors of a class of bipartite graphs. Further we determine certain matrices whose permanents generate the Lucas p-numbers and their sum...
متن کامل